Pemodelan Ketahanan Emiten Indeks LQ45 Menggunakan Metode Bayesian Cox Proportional Hazard
نویسندگان
چکیده
Pandemi berdampak pada segala aspek kehidupan, salah satunya yaitu perekonomian yang mana mampu mempengaruhi keputusan investor dalam berinvestasi di pasar modal atau Bursa Efek Indonesia (BEI). Terdapat banyak indeks saham BEI, LQ45. Indeks LQ45 merupakan kumpulan 45 emiten terbaik dengan likuiditas tinggi dan kapitalisasi besar serta fundamental perusahaan baik. Fundamental ini mengacu performa keuangan ditinjau melalui laporan keuangan. Indikator evaluasi ialah rasio keuangan, dimana rasio-rasio ketahanan Selanjutnya, satu analisis sesuai survival karena data bergantung waktu. Metode digunakan tugas akhir Cox Proportional Hazard Model pendekatan bayesian. model semiparametrik sehingga tidak mengharuskan mengikuti distribusi tertentu. Pendekatan Bayesian dapat untuk memperoleh parameter lebih signifikan. Penelitian dilakukan menentukan terbentuk antara Hazard, mengetahui faktor tetap tergabung berdasarkan menggunakan 13 variabel eksplanatori dari periode 2016 hingga 2021. Hasil penelitian menunjukkan bahwa pemodelan baik dibuktikan nilai Deviance information Criterion (DIC) kecil sebesar 147,31, berbanding Information (BIC) 149,72. Berdasarkan Return on Equity (ROE), Net Profit Margin (NPM), Debt to Ratio (DER), Working Capital Turnover (WCT). ratio (ROE) adalah 0,959, (NPM) 1,052, (DER) 1,866, (WCT) 1,972.
منابع مشابه
Life Duration of New Firms in Iranian Manufacturing Industries Using Cox Proportional Hazard Model
In this paper, the Cox proportional hazard model is used to answer several questions. In general, fourteen variables are applied in four groups: firm, industry, expenditure human resources specific characteristics as well. According to the previous literature in this field, the findings of this paper also show that the factors which affect life duration of firms are different between industries...
متن کاملMaking Large Cox's Proportional Hazard Models Tractable in Bayesian Networks
Cox’s proportional hazard (CPH) model is a statistical technique that captures the interaction between a set of risk factors and an effect variable. While the CPH model is popular in survival analysis, Bayesian networks offer an attractive alternative that is intuitive, general, theoretically sound, and avoids CPH model’s restrictive assumptions. Existing CPH models are a great source of existi...
متن کاملBayesian Model Averaging in Proportional Hazard Models: Assessing Stroke Risk
Evaluating the risk of stroke is important in reducing the incidence of this devastating disease. Here, we apply Bayesian model averaging to variable selection in Cox proportional hazard models in the context of the Cardiovascular Health Study, a comprehensive investigation into the risk factors for stroke. We introduce a technique based on the leaps and bounds algorithm which e ciently locates...
متن کاملPenambahan emosi menggunakan metode manipulasi prosodi untuk sistem text to speech bahasa Indonesia
Abstrak—Text To Speech (TTS) merupakan suatu sistem yang dapat mengonversi teks dalam format suatu bahasa menjadi ucapan sesuai dengan pembacaan teks dalam bahasa yang digunakan. Fokus penelitian yaitu suatu konsep pengucapan natural, dengan usaha “memanusiakan” pelafalan sintesa suara sistem Text To Speech yang dihasilkan. Kebutuhan utama yang digunakan untuk sistem Text To Speech dalam peneli...
متن کاملApplication of Cox Proportional Hazard Model to the Stock Exchange Market
Survival analysis is widely used in mechanical research, engineering and many other fields. This paper introduces the properties and modeling methods for survival data, then fits a Cox Proportional Hazards Model for stock data in the Shanghai Security Market. Introduction By September 17th, the Shanghai stock exchange’s benchmark index had plunged 64% since the start of the year, reaching a 52-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Jurnal Sains dan Seni ITS (e-journal)
سال: 2023
ISSN: ['2337-3520']
DOI: https://doi.org/10.12962/j23373520.v11i6.92236